
Risky Requirements

4 CROSSTALK The Journal of Defense Software Engineering April 2002

Afew years ago the movie “Overboard”
was released. This is a movie about a

rich woman (JoAnna) who was accus-
tomed to having everything her own way.
The movie begins with JoAnna hiring an
uncouth carpenter (Dean) to remodel the
closet of her luxurious yacht. Following
several unpleasant encounters between the
two during the remodeling project, a
major confrontation occurs as the carpen-
ter has completed work, and the yacht is
preparing to leave port.

While the carpenter is demonstrating
the features of his work, the rich, arro-
gant, JoAnna asks what the closet is made
of. In response, Dean indicates that the
closet is made of oak. His response push-
es JoAnna over the edge. She says that she
wanted the closet to be made of cedar.
The carpenter responds that if she wanted
the closet to be made out of cedar, she
should have asked for cedar. He tells her
that he would be glad to make the closet
out of cedar, but that his estimate would
be more than double because he would
have to re-do the whole project. To which
she responded, “the whole civilized world
knows that closets are made of cedar!”
She further indicates that she is not going
to pay for “his” mistake! The confronta-
tion escalates to the point that she pushes
Dean overboard.

This humorous example demon-
strates how easily requirements can be
confused between the various stakehold-
ers of any venture. Confusion, misunder-
standing, and frustration relative to
requirements are major risks to the suc-
cess of any project.

At the 5th Annual Joint Aerospace
Weapons Systems Support, Sensors, and
Simulation Symposium in 1999, the
results of a study of 1995 Department of
Defense (DoD) software spending were
presented. A summary of that study is
shown in Figure 1. As indicated, of $35.7
billion spent by the DoD for software,

only 2 percent of the software was able to
be used as delivered. The vast majority, 75
percent, of the software was either never
used or was cancelled prior to delivery.
The remaining 23 percent of the software
was used following modification [1].

A similar study conducted by the
Standish Group on non-DoD software
projects in 1994 produced very similar
results. In over 8,000 projects conducted
by 350 companies, only 16 percent of the
projects were considered successful.

Success in this study was considered soft-
ware delivered on time and within budget
[2].

More recently, an analysis of the data
gathered by the Software Engineering
Institute (SEI) on 451 Capability
Maturity Model® (CMM®) Level 1 CMM-
Based Assessments for Internal Process
Improvement conducted from 1997
through August 2001 indicates that
requirements continue to be a problem.
Of the assessments conducted, approxi-
mately 95 percent included an assessment
of the Requirements Management Key
Process Area (KPA). Of these, only 33
percent fully satisfied the Requirements
Management KPA [3].

So what does this data mean? Are we
as an industry wasting away billions of
dollars due to incompetence? What is the

reason for this dismal representation of
our capabilities? Further research by the
Standish Group indicates the following
major reasons for the high failure rate in
software development:
• Poor requirements.
• Lack of understanding that cost and

schedule are engineering parameters
based on requirements.

• Lack of understanding and following a
process and a life cycle.
Are we all like Dean, the carpenter in

“Overboard”? The above studies indicate
that the way we define, analyze, and man-
age requirements is imposing serious risk
to the success of our software projects.

Requirements Risks
But We Gave You Exactly What You
Asked For
Have you ever been disappointed when
you received exactly what you asked for?
The story is told of an executive who
when asked about his satisfaction with a
new software application indicated that he
hated it. When asked why, he responded,
“They gave me exactly what I asked for.”

The requirements definition phase of
a software project is never the self-con-
tained function implied by many software
development life-cycle models. The
requirements gathering phase is rather an
iterative process. It is not enough to
obtain the stakeholder’s requirements
once and assume that they are correct. By
so doing, the risk of giving the stakehold-
er what they ask for, rather than what they
really need, is increased.

I Know That I Think I Know What Your
Requirements Are
This requirement risk can be exemplified
by the co-author’s (Leishman’s) first soft-
ware project. Being new to the job, he was
determined to demonstrate his abilities.
Following a short meeting with the project
stakeholders, Leishman disappeared into
cubie-land to work his magic. A few weeks
later, he emerged from his cubbyhole and

Requirements Risks Can
Drown Software Projects

Theron R. Leishman and Dr. David A. Cook
Software Technology Support Center

Software requirements management is often viewed as a stand-alone task in terms of life-cycle activities. Of course, some of
the major risks to project completion are incomplete, inaccurate, or vague requirements. In this article we will present and dis-
cuss several requirements risks that may have major impacts on the success of software projects. We will then consider strate-
gies to help mitigate the impact of these requirements risks.

“In over 8,000 projects
conducted by 350
companies, only 16

percent of the
projects were considered

successful ... delivered
on time and within

budget.”

® Capability Maturity Model, CMM, Software Capability
Maturity Model, and SW-CMM are registered in the U.S.
Patent and Trademark Office.

April 2002 www.stsc.hill.af.mil 5

Requirements Risks Can Drown Software Projects

proudly presented the product of his
efforts to the stakeholders. To his dismay,
the system did not do what the stakehold-
ers required it to do. They were pleased
that their application was delivered on
time, but very upset that the application
did not do what they required.

This risk is a very common occur-
rence. It is characterized by not involving
project stakeholders throughout the devel-
opment effort. Typically this requirements
risk will not be identified until stakeholder
testing or implementation. By not taking
necessary steps to assure that we under-
stand the requirements, we are inviting
project rework that will result in schedule
delays and cost overruns.

Overboard Assumptions
This is the requirements risk we identified
in the movie example in the introduction
of this article. There are things in each of
our frames of reference that appear to be
no-brainers! In the movie, JoAnna indi-
cated that, “The whole civilized world
knows that closets are made of cedar.”
Why then was there a question of the cus-
tomer’s requirements? Because the frame
of reference of the rich and famous was
totally different than that of the country
hick carpenter.

The risk of assuming that developers
and customers have the same thoughts
about system requirements is like assum-
ing that we all agree on political or reli-
gious issues. As in the case of the carpen-
ter, these issues are often not identified
until the customer first sees the applica-
tion. At this stage of development, there
will almost certainly be negative impacts
on both project cost and schedule.

The Expectations Cloud
A few years ago, a woman responded to
an advertisement to have the carpets in
her house cleaned. The advertisement
offered three rooms of carpet cleaned for
$69.95. Seeing this as a good deal, she
contacted the company and indicated that
she would like the three-room special.
The representative came to her house and

cleaned the carpet in the three rooms
identified. Upon completion, the techni-
cian presented a bill for $249. Needless to
say, the woman was not a happy camper!
When questioned about the bill, the tech-
nician indicated that the three-room spe-
cial applied to rooms with dimensions of
10 feet by 10 feet. The three rooms
cleaned were each considerably larger
than this.

So, who was at fault in this carpet-
cleaning situation? Was it the woman’s
responsibility to assure that there was
agreement to the expectations prior to the
work being completed? Or was it the
responsibility of the service provider to
assure that he met the woman’s expecta-
tions? Regardless of where the responsi-
bility for clarification belonged, the
woman was a dissatisfied customer!

There are numerous software project
examples of stakeholder expectations not
being resolved prior to the project begin-
ning. Like the carpet example, if the cus-
tomers’ expectations are not met, future
services will not be requested.

The Never-Ending Requirements
Story
The world we live in is rapidly changing.
The business, economic, political, and mil-
itary environments are all changing and
fluctuating daily based on world condi-
tions. Technology is likewise changing at a
very rapid rate. In this environment, it is
unrealistic to assume that software require-
ments are not going to change during the
development process.

The risk of requirements changing is
that the changes will spiral out of control
and prevent an application from ever being
completed. The never-ending requirement
story is also one of the never-completing
software project. An additional risk of
constant change is the lack of common
requirements understanding by the various
stakeholders during the various iterations
of requirements. The result is confusion,
chaos, misunderstanding, and software
either never being completed, or if com-
pleted never being used.

I Don’t Know What I Want, but I’ll
Know It When I See It
There are also those occasions when
stakeholders are not interested in clearly
defining their requirements. These stake-
holders assume they have the luxury of
having developers play the development
game over and over until they get some-
thing they like.

The risk of allowing this attitude to
exist in the stakeholder environment is
that valuable development resources are
wasted playing a guessing game. Every
iteration expended and left floundering in
the dark to arrive at a solution that meets
the stakeholders’ unknown requirements
increases development costs and extends
the project schedule.

A further risk with this attitude is that
the software project is not perceived to
belong to the stakeholders. They remain
removed from the project, do not accept
ownership, and thus increase the risk of
project failure.

Rapid Development Requirements
Risks
In an attempt to increase the speed of
software development, various rapid
development approaches have been
devised. The use of Rapid Application
Development, Unified Modeling Lan-
guage Use Cases, and Extreme Program-
ming are examples of new approaches
that have been taken to speed software
development.

When conducted properly, each of
these approaches includes a process of
requirements analysis. Often these new
approaches have sought newer, better
ways to document, verify, and track stake-
holder requirements. The risk associated
with these approaches is the same old
temptation to cut corners when conduct-
ing requirements analysis that we often
find in more traditional approaches.
Often, developers who are not properly
trained in these approaches assume that
“rapid” means incomplete or haphazard.
Some do not recognize the need for ade-
quate requirements analysis and will elimi-

46%

29%
3%

2%
20%

Software paid for, but not delivered - 29%

Software used, but extensively reworked or abandoned - 20%

Software used as delivered - 2%

Software delivered, but not successfully used - 46%

Software used after changes - 3%

Total Software Costs - $35.7 billion

Figure 1: Findings of a 1995 Department of Defense Software Study

Risky Requirements

6 CROSSTALK The Journal of Defense Software Engineering April 2002

nate or minimize the requirements analy-
sis process. This is a tremendous risk to
project success.

Failure to Recognize that Faulty
Requirements Represent a Risk
According to the SEI Software Capability
Maturity Model® (SW-CMM®), “Require-
ments management involves establishing
and maintaining an agreement with the
customer on the requirements for the
software project. The agreement forms
the basis for estimating, planning, per-
forming, and tracking the software pro-
ject’s activities throughout the software
life cycle [4].” Years of experience have
revealed that errors occurring in the
requirements stage of the development
process turn out to be the most difficult
and costly to fix.

The Software Technology Support
Center has, upon the request of various
program managers, conducted Independ-
ent Expert Program Reviews. These
reviews are conducted to assist program
managers in determining the wellness of
their programs and evaluating areas of
concern to the program. A common find-
ing in many of these reviews is that
requirements elicitation, analysis, and
management is being conducted in an
inefficient manner. In several of these
cases, requirements inadequacies have
proven to be a major contributor to the
program being behind schedule and over
budget.

It is essential to understand that
requirements, or more appropriately the
lack of adequate requirements, can be a
significant risk to the success of any proj-
ect. The soundness of the organization’s
requirements management process should
be taken into consideration when evaluat-
ing the risk that requirements may have on
the success of your project.

Can’t You Read My Mind?
Failure to document requirements in a
format that promotes clear, complete, and
comprehensive understanding is a serious
risk to project success. In his article,
“When Telepathy Won’t Do:
Requirements Engineering Key Practices
[5],” Karl Wiegers indicates that the most
essential and yet often neglected practice
is to write down, or document, the
requirements. He goes on to indicate that
requirements should be documented in
some acceptable, structured format as
they are gathered and analyzed.

After all, is not the purpose of the
requirements process to communicate a
shared understanding of what the system
requires among the project stakeholders?

The need to communicate requirements is
directly connected with the need to docu-
ment requirements. If requirements are
not documented in some manner, it is
impossible for multiple individuals to
come to a common understanding and
agreement of the requirements.

Strategies to Mitigate
Requirements Risks
Develop and Follow Sound Processes
and Procedures
A software process can be defined as a
set of activities, methods, practices, and
transformations that people employ to
develop and maintain software and the
associated products [4]. The problem
comes when the process that I follow
and the process others in the organiza-
tion follow is not the same. The result is
a lack of consistency in the way software
is developed and maintained. This lack of

consistency leads to confusion, misun-
derstandings, development delays, and
cost overruns.

An important step to mitigating
requirements risks is for the organization
to develop and strictly follow sound
processes and procedures relative to
requirements engineering. These process-
es and procedures should include direc-
tion to developers in the following areas:
• Requirements elicitation.
• Requirements analysis.
• Documentation of requirements.
• Requirements verification, review, and

approval.
• Configuration control of require-

ments.
• Requirements traceability.

The organization should also ensure
that roles and responsibilities relative to
these processes and procedures are clear-
ly defined. In one aerospace software

development organization we know, the
application development manager went
to great lengths to impress upon the soft-
ware project leaders that the ultimate suc-
cess of each development project rested
upon their heads. The responsibility for
resolving assumptions, ambiguities, and
clarifying stakeholder expectations rests
upon the developers.

Incorporate Requirements into All
Software Life Cycles
By now, the need and value of having
organizationally accepted software life-
cycle models and methods should be well
established. From our research and
knowledge of various life-cycle models,
they all include a requirements analysis,
requirements management, or stakehold-
er requirements phase.

By assuring that the life cycle(s)
approved for usage within the organiza-
tion require proper levels of require-
ments administration, the risk associated
with projects relative to requirements will
be reduced.

Provide Training to Those
Responsible for Requirements
Management
Requirements elicitation, analysis, docu-
mentation, verification, and maintenance
are not simple tasks. The ability to facili-
tate the elicitation of requirements and
follow the process through to completion
requires knowledge and skill. Those with-
in the organization who are responsible
for assuring that requirements are man-
aged, must receive the training and men-
toring necessary to provide them with the
ability to fulfill this responsibility.

Require User Involvement
In their CHAOS Report of 1995, the
Standish Group indicated that informa-
tion technology (IT) projects fail because
they lack user involvement, follow
incomplete requirements and specifica-
tions, and experience confusion caused
by changing requirements and specifica-
tions. The lack of adequate user involve-
ment is a virtual guarantee of project
failure.

In the article, “13 Common Objec-
tions Against User Requirements Analy-
sis, and Why You Should Not Believe
Them [6],” the author looks at 13 excus-
es used for not involving users in the
development of Web-based projects. The
conclusion drawn is that user involve-
ment is imperative to the success of IT
projects even in the rapidly changing web
environment.

Users are the primary stakeholders in

“The need for user
involvement is

imperative. By requiring
user involvement in
the requirements

process, the risk to the
project of inadequate

requirements is
greatly reduced.”

Requirements Risks Can Drown Software Projects

April 2002 www.stsc.hill.af.mil 7

most software projects. To assume that
the primary stakeholder can be eliminated
and have the project succeed is approach-
ing lunacy. Yet as indicated in the study
conducted by the Standish Group, lack of
user involvement in requirements analysis
and verification is the root cause of many
development project problems.

The need for user involvement is
imperative. By requiring user involvement
in the requirements process, the risk to
the project of inadequate requirements is
greatly reduced. This mitigation strategy
combined with having and following
sound processes and procedures, which
are also supported by defined software
life cycles, will greatly reduce require-
ments risks.

Always Document Requirements
The need to reach a common understand-
ing of requirements among key project
stakeholders is vital to the success of a
software project. To reach common
understanding it is essential that require-
ments be documented. Any text on soft-
ware requirements will indicate that good
requirements’ characteristics include the
following:
• Correct.
• Complete.
• Consistent.
• Unambiguous.
• Verifiable.
• Understandable.
• Traceable.
• Modifiable.

Historically, requirements have been
documented in a System Requirements
Specification (SRS) or other similar docu-
ment. In recent years requirements docu-
mentation has taken on various forms.
Today there are three basic forms of doc-
umentation used for requirements: text
based, box based, and graphics based.

Text-based documentation relies on
formally defined language to describe sys-
tem requirements. This approach has been
criticized as being old fashioned, slow, and
subject to various interpretations based
on the background of the various stake-
holders.

Box-based documentation uses geo-
metric symbols to represent various
aspects of the system requirements. This
approach is designed with the software
engineer in mind and is generally more
comfortable for the software engineer to
follow and understand. This approach is
traditionally more difficult for end users
to understand because of the learning
curve associated with this type of docu-
mentation.

Graphic-based documentation is the
more recent of the three documentation
forms. It was developed to support
object-oriented development and design
techniques. This method uses geographic
symbols to represent the actual objects
within a system. As with the box-based
methods, graphic-based documentation is
tailored more toward the developer than
to the end user’s understanding.

We recommend that some combina-
tion approach be adopted. We have expe-
rience using a combination of graphics
and text. This approach helps the users
insert themselves into the process or
requirement being documented. It also is
easily understood by the developers and
serves as a useful tool to both elicit and
validate requirements.

Various programming methodologies
such as Extreme Programming and the
Unified Systems Development Process are
typically considered design and coding
aids. These approaches recommend prop-
er requirements gathering, analysis, and
validation be conducted during software
development and maintenance. These
methodologies document requirements
using models, diagrams, and text in an
environment of heavy stakeholder in-
volvement. These requirements can and
should be maintained during various iter-
ations of development and their trace-
ability maintained through the entire
development process.

Validate Software Requirements
Requirements validation is an essential
step to ensure that requirements are prop-
erly understood and documented. This
mitigation strategy goes hand in hand with
the need for dedicated stakeholder
involvement. As requirements are docu-
mented, the stakeholders should validate
them. Often the act of requirements vali-
dation will uncover requirements issues
that can be discovered in no other way.

Hold Formal Requirements Reviews
It has consistently been proven that it
costs more to correct requirements errors
that are discovered later in the life cycle.
For example, a requirement error caught
during design might cost four times more
to correct than if the error had been dis-
covered and corrected during the require-
ments phase itself [7]. Studies indicate
that document reviews greatly reduce the
errors in critical documents.

Errors, inconsistencies, ambiguities,
and confusion can be greatly reduced by
holding formal reviews of software
requirements documents. Teams perform-
ing requirements management activities

should be trained in sound review meth-
ods. Formal reviews will greatly improve
the quality of software requirements doc-
uments.

Strictly Manage Requirements
Changes
Strategies exist to help manage require-
ments “creep.” Such strategies consist of
good configuration management, formal
reviews of change requests, and a formal
change control process. Requirements
creep should be around 1 percent per
month. In fact, creep of more than 2 per-
cent a month is probably a sure sign of a
project that will never reach completion.
Without sound strategies for managing
change, a project will fail.

Even with sound strategies, stakehold-
ers must be aware of the high cost and
high risk of change. For the good of the
project, some changes are simply too
expensive or too difficult. Such changes
must be postponed until after a version of
the product is successfully delivered.

Summary
Requirements management is critical to
the success of any software development
or acquisition project. It requires the abil-
ity to deal with stakeholders of various
backgrounds with various goals, interests,
and objectives. By their very nature, there
are risks associated with the elicitation,
analysis, and validation of requirements. If
not given proper attention, these require-
ments’ risks can push software projects
overboard and result in software projects
drowning!

By recognizing the potential impact of
these requirements’ risks, steps can be
taken to turn these risks into strengths.
Instead of requirements being the source
of problems, a disciplined software re-
quirements management process can help
to assure the success of your software
projects.◆

References
1. Jarzombek, Stanley J. “The 5th Annual

Joint Aerospace Weapons Systems
Support, Sensors, and Simulation
Symposium (JAWS S3).” Proceedings,
1999.

2. The Standish Group International, Inc.
The CHAOS Report, 1994.

3. Software Engineering Institute. “Pro-
cess Maturity Profile of the Software
Community.” Mid-year Update, Aug.
2001.

4. Software Engineering Institute. The
Capability Maturity Model Guidelines
for Improving the Software Process.
Boston: Addison-Wesley, 1994.

8 CROSSTALK The Journal of Defense Software Engineering April 2002

5. Wiegers, Karl E. “When Telepathy
Won’t Do: Requirements Engineering
Key Practices.” Cutter IT Journal May
2000.

6. D’Hertefelt, Sim. “13 Common
Objections Against User Require-
ments Analysis, and Why You Should
Not Believe Them.” Interaction
Architect.com 9 June 2000.

7. Boehm, Barry, and Wilfred J. Hansen.
“The Spiral Model as a Tool for Evo-
lutionary Acquisition.” CrossTalk

May 2001.

Additional Reading
1. Dorfman, Merlin. “Requirements

Engineering.” SEI Interactive Mar.
1999.

2. Kar, Pradip, and Michelle Bailey.
“Characteristics of Good Require-
ments.” INCOSE Symposium, 1996.

3. Thomas, Bill. “Meeting the Chal-
lenges of Requirements Engineer-
ing.” SEI Interactive Mar. 1999.

4. VanBuren, Jim, and Dr. David A.
Cook. “Experiences in the Adoption
of Requirements Engineering Tech-
nologies.” CrossTalk Dec. 1998.

5. Wiegers, Karl E. Software Require-
ments. Microsoft Press, 1999.

6. Wiegers, Karl E. “Karl Wiegers
Describes 10 Requirements Traps to
Avoid.” Software Testing and Quality
Engineering Jan./Feb. 2000.

About the Authors

David A. Cook, Ph.D.,
is the principal engineer-
ing consultant, Shim
Enterprises, Inc. He is
currently assigned as a
software-engineering

consultant to the Software Technology
Support Center at Hill Air Force Base,
Utah. Dr. Cook has more than 27 years
of experience in software development
and software management. He was for-
merly an associate professor of comput-
er science at the U. S. Air Force
Academy (where he was also the depart-
ment research director) and also the
deputy department head of the
Software Professional Development
Program at the Air Force Institute of
Technology. Dr. Cook has published
numerous articles on software process
improvement, software engineering,
object-oriented software development,
programming languages, and require-
ments engineering. He has a doctorate
degree in computer science from Texas
A&M University, and he is an authorized
Personal Software Process instructor.

Software Technology Support Center
7278 4th Street
Bldg. 100
Hill AFB, UT 84056
Phone: (801) 775-3055
Fax: (801) 777-8069
E-mail: david.cook@hill.af.mil

Theron R. Leishman
is a consultant currently
on contract with the
Software Technology
Support Center at Hill
Air Force Base, Utah.

Leishman has 18 years experience in
various aspects of software develop-
ment. He has successfully managed
software projects and performed con-
sulting services for the Department of
Defense, aerospace, manufacturing,
health care, higher education, and other
industries. This experience has provid-
ed a strong background in systems
analysis, design, development, project
management, and software process
improvement. Leishman has a master’s
in business administration from the
University of Phoenix. He is a Level II
Certified International Configuration
Manager (CICM) by the International
Society of Configuration Management
(ISCM), and is employed by TRW.

Software Technology Support Center
7278 4th Street
Bldg. 100 G19
Hill AFB, UT 84056
Phone: (801) 775-5738
Fax: (801) 777-8069
E-mail: theron.leishman@hill.af.mil

COMING EVENTS

April 9-10
Southeastern Software

Engineering Conference
Huntsville, AL

www.ndia-tvc.org/SESEC2002/

April 29-May 2
Software Technology Conference 2002

“Forging the Future of Defense
Through Technology”

Salt Lake City, UT
www.stc-online.org

May 13-17
Software Testing

Analysis and Review
(STAREAST 2002)

Orlando, FL
www.sqe.com/stareast

June 3-6
Combat Identification Systems

Conference

Colorado Springs, CO
www.usasymposium.com

June 3-7
Software Quality Engineering

Test Week
Chicago, IL

www.sqe.com

June 17-19
11th Annual Executive Forum on

Modeling and Simulation
Norfolk, VA

www.dmso.mil/index.php?page=27

July 22-25
Joint Advanced Weapons Systems Sensors,

Simulation, and Support Symposium
(JAWS S3)

Colorado Springs, CO
www.jawswg.hill.af.mil

Did this article pique your
interest?
You can hear more from these authors
at the Fourteenth Annual Software
Technology Conference Apr. 29-May 2,
2002, in Salt Lake City, UT. They will
be presenting in Track 7 on Wednesday,
May 1, at 10:00 a.m.

Risky Requirements

